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In a planar free-hand drawing of an ellipse, the speed of movement
is proportional to the −1/3 power of the local curvature, which is
widely thought to hold for general curved shapes. We investigated
this phenomenon for general curved hand movements by analyzing
an optimal control model that maximizes a smoothness cost and
exhibits the −1/3 power for ellipses. For the analysis, we introduced
a new representation for curved movements based on a moving
reference frame and a dimensionless angle coordinate that revealed
scale-invariant features of curved movements. The analysis con-
firmed the power law for drawing ellipses but also predicted a spec-
trum of power laws with exponents ranging between 0 and−2/3 for
simple movements that can be characterized by a single angular
frequency. Moreover, it predicted mixtures of power laws for more
complex, multifrequency movements that were confirmed with hu-
man drawing experiments. The speed profiles of arbitrary doodling
movements that exhibit broadband curvature profiles were accu-
rately predicted as well. These findings have implications for motor
planning and predict that movements only depend on one radian of
angle coordinate in the past and only need to be planned one
radian ahead.
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Natural body movements have surprising regularities despite
the complexity of the movements and the many degrees of

freedom that are involved. These regularities provide insights into
principles underlying the mechanisms that generate the move-
ments. We investigate here conditions when a known regularity
fails to adequately describe motor behavior, which adds new in-
sights into how movements are generated by the nervous system.
One of the best-studied movement regularities is the inverse re-

lationship between the speed and curvature of 2D hand movements
observed when subjects are instructed to freely draw curved shapes
such as ellipses, which follow a remarkably simple power law (1):

υðtÞ∝ κðtÞ−β,   ðβ≈ 1=3Þ. [1]

This empirical relationship is called the one-third power law
between speed and curvature, or equivalently, the two-thirds
power law between angular speed and curvature. On a log
curvature vs. log speed plot of hand movement, the power law
appears as a single straight line with a slope of −1=3 (Fig. 1A).
However, deviations from Eq. 1 have been observed for some

movement trajectories. One class of deviation occurs when the
curvature changes sign: The power law predicts the speed should
diverge to infinity as the curvature approaches zero, which is
physically implausible, whereas actual movements exhibit smooth,
finite speed profiles at such inflection points. Deviations have also
been observed for movements without inflection points (1–4).
These noninflectional deviations occur in complex movements and
are characterized by fragmentation of the log speed vs. log cur-
vature plot into multiple line segments (Fig. 1B). These obser-
vations led to the segmented control hypothesis that complex
movements could be generated by concatenating smaller and
simpler movement segments, each of which separately obeys the
one-third power law (2, 3). Unlike inflectional deviations, however,
the origin and properties of noninflectional deviations, as well as
the conditions that cause fragmentation, are poorly understood.

A variety of competing theoretical models have been proposed
to explain the power law for curved trajectories (3–10). These
models can reproduce the one-third power law relationship for
simple, ellipse drawing movements, and most of them do not ex-
hibit inflectional deviations (for an exception, see refs. 4 and 7).
However, it is not known whether these models exhibit the ob-
served fragmentation of power law for complex trajectories, be-
cause most of them have only been examined for a narrow range
of movements.
Here, we investigate one of the models, the minimum-jerk

model, for a wide range of convex movement paths without in-
flection points. Remarkably, this optimal control model is known
to reproduce accurately the one-third power law for simple, ellipse
drawing movements (8), as well as the apparent fragmentation
observed for more complex movement trajectories without in-
voking the segmented control hypothesis (3, 9, 10). This suggests
that there may be additional regularities underlying fragmenta-
tion, apart from the one-third power law relationship. Thus, a
closer examination of the minimum-jerk model could lead to a
more comprehensive understanding of the regularities in curved
hand movements.
The following questions will be addressed: First, how does the

power law arise from the optimality principle? Second, what de-
termines the particular exponent β? Finally, how can complex
movements be characterized, and why do they deviate from power
law behaviors?

New Representation for Curved Movements
The minimum-jerk model minimizes the total squared-jerk cost
over a trajectory, where jerk is the second-order time derivative
of hand velocity (11). It also requires additional information
about the movement, such as the duration and path shape, which
are provided as constraints (3, 9).
The model is usually represented in Cartesian frame with time

coordinate, in which the jerk cost is expressed as L= ðd2υx=dt2Þ2 +
ðd2υy=dt2Þ2. In this representation, however, the explicit path
constraint makes the optimization problem difficult to solve. In
previous studies, the path constraint was instead approximated
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with a number of point constraints (via points) along the path,
which allowed the model to be solved with numerical optimization
(3, 9, 11).
Here, we take an alternative, analytic approach to finding

optimal solutions. Because the path constraint only restricts
movement direction but not speed, the optimization problem can
be significantly simplified if represented in a way that separates
these variables. A similar approach is used in robotics for effi-
cient trajectory planning (12). This representation requires
replacing both the frame of reference and time coordinate for
the path.
First, we replace the usual Cartesian frame with a moving

reference frame (Frenet–Serret frame) whose basis vectors ro-
tate with the direction of movement (Fig. 2B) (9, 10, 13). This
frame naturally separates magnitude and directional information
of a movement: (i) An instantaneous velocity vector is repre-
sented by its speed and tangent direction, and (ii) a velocity
profile along the path is represented by two scalar profiles, the
speed profile and the curvature profile; the latter describes how
the tangent vector rotates along the path.
Although the curvature profile in principle carries the full

directional information of a movement, it fails to uniquely
define the path shape when represented as a function of time,
fκðtÞg. This is because the time parameterization, and thus
the path shape defined by fκðtÞg, depends on the speed pro-
file. In previous approaches, this problem was resolved by
replacing the time coordinate with the arc-length coordinate
(9, 10, 13). Here, we instead introduce the orientation of the
tangent vector as the new coordinate system, the angle co-
ordinate, θ (Fig. 2B); this can be understood as the arc-length
coordinate normalized by the local curvature, which is the
natural length scale of the curve. The angle coordinate is di-
mensionless and scale-invariant—a point on a trajectory that is
scaled in time or size has the same angular coordinate value—a
property that has fundamental importance for our later analy-
sis. Note that for convex paths without inflection points, θ
changes monotonically along the paths, and therefore is a valid
coordinate.

Minimum-Jerk Solution in the New Representation
In the angle coordinate system, a curvature profile uniquely defines
the shape of a movement path up to translations, independently of

the speed profile. Because the path constraint is implicitly in-
corporated into the representation, it only restricts the curvature
profile without affecting the speed profile.
In this representation, the total squared-jerk cost becomes the

following (Appendix A):Z
L  dt=

Z
κ3υ5

��
2 _z2 + z

::
+ _h _z− 1

�2
+
�
3 _z+ _h

�2�
dθ, [2]

where the dot notation represents differentiation by angle, and
z= logðv=voÞ h= logðκ=κoÞ are, respectively, the log speed and the
log curvature with arbitrary dimensional constants vo, κo. Given
the log curvature profile fhðθÞg of the movement path, the log
speed profile fzðθÞg can be obtained by optimizing Eq. 2 subject
only to the movement duration constraint.
The optimality condition for the model, obtained analytically

from the Euler–Lagrange equation, is given by the following
(Appendix B):
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[3]

where λ is a Lagrange multiplier that incorporates the duration
constraint. This equation describes the minimum-jerk relation-
ship between the curvature and speed profiles. In the following
sections, we analyze this result to discover the hidden regularities
of curved hand movements.

Spiral Movements
A rare case for which the nonlinear Euler–Lagrange equation in
[3] can be exactly solved in closed form is a logarithmic spiral
path. It has a simple log curvature profile that grows linearly with
the angle, κðθÞ= κoeaθ, and exhibits a scale-free shape. The analytic
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Fig. 1. Illustration of power law relationships for an ellipse and a complex
movement trajectory. (A) An ellipse drawing movement. The data points
(black dots) are samples along the hand trajectory at equal time intervals
(Left) and form a straight line on a log speed–log curvature scale with ap-
proximate slope of −1/3 (green line; Right). (B) A more complex movement
trajectory consisting of two conjuncted elliptic shapes of different sizes
(Left). The data points plotted on a log speed–log curvature scale form two
straight lines with approximate slopes of −1/3 (green lines; Right). The ap-
parent fragmentation into two segments is an example of a noninflectional
deviation from the simple power law.

A B

Fig. 2. Comparison between Cartesian and moving frame representations
for curved hand movements. (A) Typically, a velocity profile is represented in
a Cartesian frame, i.e., in terms of x–y components, as functions of time:
fυxðtÞg, fυyðtÞg. x̂, ŷ are the Cartesian basis vectors. (B) Instead, we use a
moving frame with unit tangent and normal vectors t̂, n̂ as the basis vectors
(Frenet–Serret frame), and the angular direction of the tangent vector, θ, as
the new coordinate along the path. In this representation, a velocity profile
can be represented by the speed and the curvature profiles: fυðθÞg, fκðθÞg.
These two representations are interchangeable: The time coordinate can be
converted to an angle coordinate, υ  dt =dθ=κ, and the x–y components of
the velocity profile are υx = υ cosðθÞ, υy = υ sinðθÞ. Note that θ increases by 2π
with each rotation.
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solution for this spiral path is υðθÞ= υoe−ð2=3Þaθ (Appendix C), which
is indeed a power law relationship:

υðθÞ∝ κðθÞ−2=3 ðspiralsÞ. [4]

However, this predicts an exponent of β= 2=3, not the expected
one-third power law relationship in Eq. 1. In addition to this
analytical result, numerical optimization of the cost function ro-
bustly confirms the two-thirds power law relationship for other
spiral path shapes, including Archimedean spirals, hyperbolic
spirals, and Fermat’s spirals, as well as arbitrary spirals with
slowly changing curvature profiles.
To test this result, we recorded spiral drawing movements, i.e.,

circular movements with slowly changing radii, from N = 8 subjects
(Materials and Methods and Fig. 3). The average power law expo-
nent was β= 0.697± 0.052 (mean and SD), confirming the pre-
dicted power law exponent, which is significantly different from 1/3.
This result demonstrates that curved hand movements can ex-

hibit a power law that systematically deviates from the one-third
power law. It also raises new questions: Ellipse drawing exhibits
the one-third power law, so what is different about spiral drawing?
Are these power laws two separate, unrelated phenomena, or is
there a continuous spectrum of power laws? If so, which geo-
metric feature of the curve is important in determining the
power law exponent?

Angular Frequency: A Scale-Invariant Geometric Feature
The one-third power law for elliptic movements is invariant to
the physical scale of the movements: It holds robustly across a
wide range of sizes and speeds. The minimum-jerk model also
generates movements that are scale-invariant because the cost
function in Eq. 2 is dimensionless except for an overall constant
factor κ3oυ

5
o; changing the overall movement size or duration

should not affect the qualitative properties of minimum-jerk
solutions. Therefore, the power law exponent predicted by the
model can depend only on scale-free geometric features.
A salient difference between elliptic and spiral curves is the

frequency with which their curvature profiles vary: The curvature
of a spiral changes gradually compared with the frequent varia-
tions of the curvature along an ellipse. Here, we define “angular
frequency” of a curve as the number of curvature oscillations per
unit angle of θ, which we choose to be one full rotation, or 2π
radians. For example, an elliptic path is characterized by angular
frequency 2, because its curvature profile oscillates twice per one
rotation of θ. In contrast, a logarithmic spiral is a limiting case
whose characteristic angular frequency approaches zero, because
its log curvature grows monotonically, i.e., with an infinite period.
Angular frequency is a scale-invariant property of path shape

that does not depend on the overall movement speed or size; this

property derives from the scale-invariant nature of the angle
coordinate. In contrast, the temporal or spatial frequency defined
with respect to time or arc length coordinate scale inversely with
duration or overall size of the movement.

Pure Frequency Curves
Ellipses and spirals are examples of curves that can be character-
ized by single angular frequencies. More generally, we define such
“pure frequency” curves by having sinusoidal log curvature profiles:

hðθÞ= e sinðνθÞ, [5]

where ν is the frequency and e is the amplitude. (e= 0 describes a
circular path shape.) A phase shift could also be added, which
rotates the shape.
Some examples of pure frequency curves are shown in Fig. 4.

At integer frequencies with ν> 2, these curves resemble rounded
regular polygons. In general, a curve with a rational frequency
ν=m=n, where m and n are coprime integers (i.e., no common
factors) and m≠ 1, has a closed shape of period Θ= 2πn, and
exhibits m degrees of rotational symmetry. If m= 1, then the
curve exhibits a translational symmetry. A logarithmic spiral is
the zero frequency limit of a pure frequency curve: hðθÞ=
limν→0ða=νÞsinðνθÞ= aθ.

Theoretical Prediction. The optimal log speed profile for pure
frequency curves can be expanded as a sum of harmonic terms.
To first order in «, the expansion of Eq. 3 yields the following:

zðθÞ≈−eβsinðνθÞ, [6]

where the gain is given by the following:

βðνÞ= 2
3

�
1+ ν2

�
2

1+ ν2 + ν4=15

�
, [7]

which provides an excellent approximation over a wide range of
amplitude and frequency (Appendix D). This first-order approx-
imation describes a linear relationship between log curvature and
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Fig. 3. Power law relationship for spiral movements. (Left) A spiral trajec-
tory drawn by a subject (a circular trajectory with slowly changing radius).
(Right) The corresponding log curvature–log speed plot. Gray dots: raw data.
Blue dots: low-pass–filtered data. Green line: a straight line with −2/3 slope.
Predicted βp = 0.667 and measured βm = 0.699. (Inset) The log curvature and
log speed profiles vs. angle coordinate for raw (dots) and filtered data
(smooth curve). (Scale bar: 0.5.)

23/24/34/5

5/2 3 4 6

2/33/50= 2/5

Fig. 4. Examples of pure frequency curves shown with their characteristic
frequencies, ν. See https://www.youtube.com/watch?v=waXWOv0YqFE for a
movie showing how the shape of the curve varies with continuously changing
angular frequency.
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log speed profiles, or equivalently, a power law relationship be-
tween speed and curvature:

υðθÞ∝ κðθÞ−β. [8]

This result predicts a spectrum of power laws for pure frequency
movements. The exponent βðνÞ is a monotonically decreasing
function of the angular frequency, starting from βð0Þ= 2=3 for
spiral movements, and approaching β→ 0 as the frequency
increases, ν→∞. Note that the prediction for ellipses is
βð2Þ= 30=91≈ 1=3. In comparison, the one-third power law
assumes a constant exponent β= 1=3 for all shapes.

Experimental Confirmation. We recorded subjects’ drawing move-
ments of pure frequency curves to test the prediction of the
minimum-jerk model (Fig. 5 and Materials and Methods). Because
there was motor variability in the movement trajectories around
the desired periodic shapes, a bandpass filter was applied to the
speed and curvature profiles (Materials and Methods).
The log speed vs. log curvature data were scattered around

straight lines (gray dots) that became sharper after filtering (blue
dots), confirming power law relationships between speed and
curvature Fig. 5A. Moreover, the slopes of the lines depended on
the frequency of the curve in a decreasing manner, which agreed
with the model prediction (Fig. 5B). Note that the model pre-
diction does not have any free parameters to fit.

Curves with Multiple Shape Features
Elliptic Spiral. Some curves, such as in Fig. 1B, cannot be charac-
terized by a single frequency but instead exhibit multiple shape
features. A good example is an elliptic-spiral trajectory, that is, an
elliptic shape with slowly changing size, which exhibits features of
both an ellipse and a spiral; these multifeature movements raise a
challenge to the results in the previous section: Given that an el-
liptic movement and a spiral movement individually follow the 1=3
and the 2=3 power laws, what should the relationship between
curvature and speed be for an elliptic-spiral movement?

Experimental data revealed a surprising result: The curvature–
speed relationship for elliptic-spiral movements showed charac-
teristics of two power laws (Fig. 6). When plotted on a log–log
scale, the data points did not form a line, but a parallelogram,
consisting of stacked parallel lines with −1=3 slope, with their
centers along a line with −2=3 slope.

Combining Shape Features. Before we can analyze multifeature
movements, we first need to address the following question:
How do multiple shape features combine to produce a complex
curve shape?
The operation of reshaping a curve with additional shape fea-

tures can be understood in terms of modifying the curve’s length
scale. For example, progressively decreasing the length scale of a
curve changes its shape to become “spiral-like,” whereas elon-
gating the curve in one direction and compressing in the per-
pendicular direction changes its shape to be “ellipse-like.”
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Fig. 5. Measurements of humans drawing pure frequency curves compared with parameter-free model predictions. (A) Typical movement examples from a
single subject shown to the Left. Black dots: movement trajectory data. Log speed vs. log curvature shown to the Right. Gray dots: raw curvature–speed data. Blue
dots: bandpass-filtered curvature–speed data. Green line: minimum-jerk model prediction. Predicted βp and measured βm are given in the Inset for each ν. (Scale
bar: 0.5.) (B) Power law exponents (β) as a function of angular frequency (ν). Blue circles: mean exponent values from N= 8 subjects measured from the slopes of
log υ− log κ plots. Error bars: SD. Red line: 1/3 power law. Green line: minimum-jerk model prediction.
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Fig. 6. Elliptic-spiral movement exhibiting a mixture of power laws. (Left)
Movement trajectory drawn by a subject. (Right) Log speed vs. log curvature
plot. The filtered data points form a parallelogram with sides having ap-
proximately −1=3 and −2=3 slopes (green region). On each elliptic arc, the
points form a straight line with −1=3 slope. Successive arcs translate along a
broader line with −2=3 slope as the ellipse size slowly changes. Gray dots:
raw data. Blue dots: smoothed data with a dual-band filter centered at
ν= 2=33 and ν= 2. βm: measured exponent for each frequency band. (Scale
bar: 1.0.)
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Because the operation of combining multiple shape features is
a type of scaling operation, it is most naturally implemented in
the scale-invariant, angle coordinate representation—as point-
wise addition of the log curvature profiles:

hðθÞ= h1ðθÞ+ h2ðθÞ. [9]

This operation indeed correctly combines a spiral and an ellipse
to produce an elliptic spiral.
The addition operation, together with scalar multiplication, de-

fines a vector space over the set of convex paths, which is spanned
by the basis set of pure frequency curves; that is, any curve in this
space can be represented as a linear combination of pure frequency
components via the Fourier transform (Fig. 7). See ref. 14 for an
in-depth discussion of the vector space of curve shapes.

Mixtures of Power Laws. As already shown for the case of elliptic
spirals, multifrequency movements do not exhibit a simple power
law relationship between curvature and speed. Instead, the first-
order analysis of Eq. 3 predicts mixtures of power law relation-
ships, which is best expressed in the frequency domain as follows:

~zðνÞ=−βðνÞ~hðνÞ, [10]

where f~zðνÞg≡F½fzðθÞg�, f~hðνÞg≡F½fhðθÞg� are, respectively,
the Fourier transforms of the log speed and log curvature profiles,
and βðνÞ is the frequency-dependent exponent shown in Eq. 7.
Therefore, the power law relationship (Eq. 8) applies to each
frequency component of the speed and curvature profiles.

Experimental Confirmation. Subjects were shown path shapes with
multiple frequency components and asked to draw the shapes
(Fig. 7). Spectral analysis of the movement data indeed showed
peaks at the chosen frequencies, for example at 2 and 2=33 for
elliptic-spiral movements, and the log speed spectrum predicted
by Eq. 10 was confirmed.
We also recorded free-form doodling movements, where the

subjects drew random, arbitrary curved shapes. Spectral analysis
of these movements revealed multiple peaks as well as broad-
band power across the spectrum, which also confirmed the pre-
dicted log speed spectrum.
Overall, the mixture of power laws explains a greater pro-

portion of the variance in speed profiles than the one-third
power law (Fig. 7G). This result also confirms that the first-order
analysis of the Euler–Lagrange equation (Eq. 3) is valid for a
broad range of hand drawings.

Low-Pass Filter Interpretation
The mixture of power laws (Eq. 10) describes the relationship

between log curvature and log speed profiles as a linear time-in-
variant operation, where the power law exponent, βðνÞ, can be
interpreted as a gain for the frequency response of a second-order
low-pass filter that suppresses high-frequency components of
movements. In the angle domain, this relationship is a convolution:

zðθÞ=−
�
~β p h

�ðθÞ, [11]

where ~βðθÞ is the impulse response function of the filter:

~βðθÞ≡F−1½βðνÞ�= 5=2
γ21 − γ22

�
γ21 − 2
γ1

e−γ1jθj −
γ22 − 2
γ2

e−γ2jθj
�
, [12]

with decay rates γ1,2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15± ffiffiffiffiffiffiffiffi

165
p Þ=2

q
, (γ1≊ 3.73 and γ2 ≊ 1.04)

(Fig. 8).
The symmetric shape of the impulse response function (Eq.

12) implies that it requires information about the future and the
past path shape to plan a curved movement. Moreover, the ex-

tent of planning is ≈ 1 radian, which is the approximate width of
the impulse response function. In contrast, the one-third power
law has a flat frequency response (Fig. 8A), and thus a delta
function impulse response in the angle domain (Fig. 8B), which
predicts that the movement speed should be instantaneously
determined by the local curvature without any planning.

Discussion
We investigated the minimum-jerk model and derived an ana-
lytic expression for the curvature–speed relationship that ac-
counts for a wide range of curved hand movements. Previous
studies analyzed the model only for a few selected trajectory
shapes and found behavior similar to the one-third power law (3,
8–10). In contrast, our analysis showed that the one-third power
law relationship cannot hold universally and instead predicted a
continuous spectrum of power laws for pure frequency move-
ments and mixtures of the power laws for general multifrequency
movements, which we subsequently confirmed experimentally.
The ansatz was to represent curved paths in terms of their log

curvature profiles in a dimensionless angle coordinate. This rep-
resentation yielded a vector space of curves, in which simple pure
frequency curves can be combined to create arbitrarily complex
curved paths. Moreover, the pure frequency curves form the
eigenbasis of the space for the first-order analysis of the Euler–
Lagrange equation that describes the optimal curvature–speed
relationship. The power law exponent is the eigenvalue of the
relationship, which is a function of the angular frequency—a scale-
invariant geometric feature that defines pure frequency curves.
So why has the one-third power law been the dominant reg-

ularity reported in the literature? It may be due to too narrow a
focus in the space of curved shapes. Indeed, only a few curved
shapes have been used in previous studies of hand drawing: El-
lipses (ν= 2) have been the most popular shape (5–7, 15); three-
lobe (ν= 3=2) or four-lobe (ν= 4=3) cloverleaf shapes have
power laws that are close to that of ellipses although they look
quite different on the surface (4). A previous perturbation
analysis of the minimum-jerk model on these shapes also found
exponents close to the one-third power law (10).
Others have studied movements with highly elongated fea-

tures, such as elliptic-spiral shapes or cursive handwriting, e.g.,
consecutive l’s (1–3), which contain concentrated power near the
frequency of ellipses (ν≈ 2) as well as in the low frequency range.
These movements generated apparent fragmentation of the one-
third power law on the log speed vs. log curvature plots, as
though the coefficient of the power law had changed across the
movement fragments. Our frequency-based analysis accounts for
the fragmentation and the one-third power law as different
manifestations of the same general regularity: a spectrum of
power laws.
The frequency-dependent power law of curved movements

provides a sensitive way to test the validity of various theoretical
models for movement control and planning. For example, the
equi–affine-speed hypothesis, which assumes the affine-speed of
human movement should be held constant, can only generate
movements that follow the one-third power law for all planar
movements (4, 7), which is inconsistent with our experimental
results. However, a recent generalization of the model, which
defines speed in a combination of Euclidean, affine, and equi-
affine geometries, can generate variable power law exponents
(13). The equilibrium point hypothesis paired with low-pass–
filtering properties of muscles exhibits one-third power law
behavior for ellipse drawing movements, if the equilibrium point
moves along the elliptic trajectory with constant speed (5, 6).
However, the low-pass filter in such models is defined in the time
domain, rather than in the dimensionless angle domain, and is
therefore unlikely to generate different power law exponents for
different angular-frequency shapes.
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We showed that the curvature–speed relationship is approxi-
mately a linear time-invariant operation that suppresses high
angular-frequency components of the speed profile. This leads
to an intuition for motor control as a low-pass–filtering opera-

tion, which agrees with the observation that human movements
tend to maximize smoothness (11). Interestingly, most subjects
reported pure frequency movements with high frequencies (ν> 3)
to be quite difficult to produce (Fig. 5A, frequencies ν= 4,6).

Power Spectrum  
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Fig. 7. Complex free-hand movements (Left) and corresponding amplitude spectra (Right) comparing log speed [~zðνÞ, blue line] and the power law exponent
times log curvature [βðνÞ~hðνÞ, green line]. Vertical yellow bars indicate the specified frequency components. (A) An elliptic-spiral movement exhibiting peaks
at 2 and 2/33, corresponding to contributions from the elliptical and the spiral components, respectively. (B) Multifrequency movements with peaks at 2/5, 4/5,
and a minor peak at 4. (C) Multifrequency movements with three peaks at 3/14, 3/7, 6/7. (D–F) Random doodles with broadband power spectra. (G) Histogram
showing the proportion of the log speed variance explained by the model [βðνÞ~hðνÞ, purple bars] or the 1/3 power law (yellow bars) for multifeature
movements, including A–F.
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Moreover, the amplitude spectra of the log curvature profiles for
free-hand doodles often show broad peaks at ν= 1.5∼ 2.5, which is
near the frequency for ellipses, and in low frequencies (ν< 1), but
minimal power at high frequencies (ν> 3) (Fig. 7 D–F). This may
imply that the motor control process also suppresses high-fre-
quency components of the path shape, although the process of
selecting movement paths is as yet an unsolved problem.
Remarkably, the low-pass–filtering operation implies that the

minimal extent necessary for motor planning has a fixed width
of ≈ 1 radian in the angle coordinate. This width, if represented
in time or distance, would scale with the speed or size of move-
ments: Slower or larger movements would require planning over a
longer time or distance. This insight also applies to planning for a
straight reaching movement, which requires complete information
of the trajectory from the start to the goal. However, if the
planning duration exceeds the capacity of working memory, which
might happen for very slow movements, the regularities observed
for normal movements may break down.
In this study, we used an angle coordinate for representing

movements, which was central in analyzing scale-invariant prop-
erties of movements, such as the exponent of the power law re-
lationship. The same dimensionless representation may also be
useful in analyzing other scale-invariant features and reveal spec-
trum of power laws in other motor contexts. Power laws have indeed
been observed in many types of movements, including 3D hand
movements (16), smooth pursuit eye movements (17), speech (18),
and walking (19), and also appear in visual motion perception (20).
The angle coordinate representation may be relevant for inter-

preting neurophysiological data as well: Power laws have been
reported in neural activity recorded in premotor and motor cortices
(21, 22), and many neurons in the motor cortex show preference for
the direction of movement (23). This is consistent with motor
planning based on a form of the angle coordinate representation for
generating motor kinematics and dynamics in an allocentric refer-
ence frame (24). Scale invariance may be a general principle used by
the motor system for organizing complex movements, and analyzing
neurophysiological data in the angle coordinate representation may
reveal new aspects of neural control of movements.

Materials and Methods
Experimental Method. A commercial tablet device (Wacom Cintiq 24HDgraphic
monitor) was used to record movement trajectories. The sampling rate of the
digitizer was 200 Hz, and the accuracy of the recorded position was 0.05 mm.
The passive sensor of the digitizer was attached to the forefinger tip to allow
freemovement of the hand.Handmovementswere recorded from1020- to 30-
y-old subjects without known motor disorders. The subjects traced shapes that
were displayed on the screen of the tablet monitor (pure and multifrequency
curves), as well as free-hand doodles, and were encouraged to draw the shapes

fluidly without making corrections. University College London institutional
ethics and Salk institutional review board approval were obtained for the
study, and participants provided written informed consent.

Analysis. The movement velocity profile was obtained by smoothly differ-
entiating the trajectory (25). The speed profile and the curvature profile
were then derived as υðtÞ= jj~υjj2, κðtÞ= υ−1dθ=dt, where θðtÞ was the con-
tinuous angle profile of movement velocity: θðtÞ=unwrapðangleð~υÞÞ. Fre-
quency analysis of the log speed and the log curvature profiles were
obtained by first spline-fitting the profiles, resampling with uniform step
size in angle coordinate, and applying the Fourier transform. For the
analysis in Fig. 5, the data were filtered with a bandpass filter around the
target frequency νo: e−5νo log2ðν=νoÞ2 .

Appendix A: Jerk Cost in the Angle Coordinate Representation
In the 2D Euclidean frame and time coordinate representation,
the velocity vector is expressed as~υ= υxx̂+ υyŷ, and the squared-
jerk cost is as follows:

L=












d

2~υ

dt2













2

=
�
d2υx
dt2

�2

+
�
d2υy
dt2

�2

,

and the total cost is
R T
0 Ldt. Instead, we use the Frenet–Serrett

frame and angle coordinate representation, whose orthonormal
basis vectors are the tangent and the normal vectors, t̂, n̂, which
rotate with the angle coordinate as follows:

_̂t= n̂, _̂n= −̂t,

where the dot notation represents differentiation by angle. In
this representation, the velocity vector and its time derivatives
are expressed as follows:

~υ= υ̂t,

d~υ
dt

= κυ2ð _ẑt+ n̂Þ,

d2~υ
dt2

= κ2υ3
��

2 _z2 + z
::
+ _h _z− 1

�̂
t+
�
3 _z+ _h

�
n̂
�
,

where time differentiation is converted to angle differentiation via
the conversion factor, dθ=dt= κυ, and z= logðυ=υoÞ, h= logðκ=κoÞ
are, respectively, the log speed and the log curvature (with
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arbitrary normalization constants υo, κo). Therefore, the in-
stantaneous cost for the minimum-jerk problem becomes the
following:

~L=
κ4υ6

��
2 _z2 + z

::
+ _h _z− 1

�2
+
�
3 _z+ _h

�2�
+ λ

κυ
,

such that the total cost is
R θf
θi

~L  dθ= R tfti ðL+ λÞdt, where λ is the
Lagrange multiplier for the duration constraint.

Appendix B: Euler–Lagrange Equation in Angle Coordinate
The optimality condition for the speed profile is given by the
Euler–Lagrange equation:

∂~L
∂z

−
d
dθ

 
∂~L
∂ _z

!
+

d2

dθ2

 
∂~L
∂z::

!
= 0.

Partial derivatives of the cost function are as follows:

∂~L
∂z

= 5κ3υ5
��

z
::
+ _h _z+ 2 _z2 − 1

�2
+
�
_h+ 3 _z

�2�
−

λ

κυ
,

∂~L
∂ _z

= 2κ3υ5
��

_h+ 4 _z
��

z
::
+ _h _z+ 2 _z2 − 1

�
+ 3
�
_h+ 3 _z

��
,

∂~L
∂z::

= 2κ3υ5
�
z
::
+ _h _z+ 2 _z2 − 1

�
,

where ∂v=∂z= υ is used, because υ= υoez. Proceeding with differ-
entiation by θ and collecting the terms yield the following:

λ= κ4υ6
�
5+ 2 z

::::− 30z
::− 10h

::
− 25 _h2 + 82 _h _z3 + 40 _z4

+ _z
�
2h
:::
+ 14h

::
_h− 90 _h+ 12 _h3

�

+ _z2
�
20h

::
+ 55 _h2 − 75

�
+15z

::2

+ z
::
�
82 _z2 + 90 _h _z+ 8h

::
+ 22 _h2

�
+ z
:::
�
20 _z+ 12 _h

��
.

[13]

Appendix C: Logarithmic Spiral
The optimality condition (Eq. 13) can be exactly solved for a
logarithmic spiral: hðθÞ= aθ. By assuming a linear form for the
log speed profile, zðθÞ= bθ, Eq. 13 reduces to the following:

λ

k4oυ6o
e−ð4a+6bÞθ = 5− a2

�
25+ 90

b
a
+ 75

b2

a2

�

+a4
�
12

b
a
+ 55

b2

a2
+ 82

b3

a3
+ 40

b4

a4

�
.

Because the right-hand side is constant, 4a+ 6b= 0, which yields
the 2/3 power law relationship:

υðθÞ= υo

�
κðθÞ
κo

�−2=3

, [14]

where vo satisfies λ=ðk4oυ6oÞ= 5+ 5a2=3+ 4a4=81.

Appendix D: Perturbation Expansion
For a pure frequency log curvature profile, hðθÞ= eeiνθ, the optimal
log speed profile can be expanded in power series of « as follows:

zðθÞ= a1eeiνθ + a2
�
eeiνθ

�2
+⋯

with the coefficients obtained from Eq. 13:

an =
ð−4Þn
6 · n!

InðνÞ. [15]

For example, the first three terms in this series expansion are as
follows:

a1 =−
2
3
I1ðνÞ, a2 =

4
3
I2ðνÞ, a3 =−

16
9
I3ðνÞ, . . .

where

I1 =
1+ ν2

�
2

1+ ν2 + ν4=15
,

I2 =

�
1−

5
8
ν2
�
− 2I1

�
1−

3
4
ν2 −

11
60
ν4
�
+ I21

�
1−

5
6
ν2 −

7
18
ν4
�

1+ 4ν2 +
16
15
ν4

.

Note that the critical amplitude at which the second-order term
becomes comparable to the first-order term is as follows:

e*=




a1a2




=




 I1ðνÞ2I2ðνÞ





, [16]

which is a decreasing function of ν with a minimum limν→∞e* =
32=17 (Fig. 9). Below this amplitude, the first-order approximation
provides a good description of the solution.
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